An article in Scientific American goes into the mechanism by which global warming could have affected mass extinctions.
The author mostly focuses on photosynthetic sulfur bacteria of the green and purple varieties - doesn't mention jellyfish. But since jellyfish have been around through the extinctions - it stands to reason that they were mostly able to withstand the conditions that he describes.
One of the indicators is the lack of oxygen in the ocean - something that seems to be occurring more frequently these days.
Highlights from Impact from the Deep:
Five times in the past 500 million years most of the world's life-forms have simply ceased to exist. The first such event happened at the end of the Ordovician period, some 443 million years ago. The second, 374 million years ago, was near the close of the Devonian. The biggest of them all, the Great Dying, at the end of the Permian 251 million years ago, wiped out 90 percent of ocean dwellers and 70 percent of plants, animals, even insects, on land [see "The Mother of Mass Extinctions," by Douglas H. Erwin; Scientific American, July 1996]. Worldwide death happened again 201 million years ago, ending the Triassic period, and the last major extinction, 65 million years ago, concluded the Cretaceous with the aforementioned big bang....
New fossil analyses indicated that the Permian and Triassic extinctions were drawn-out processes spanning hundreds of thousands of years. And newly obtained evidence of the rise and fall of atmospheric carbon, known as carbon cycling, also seemed to suggest that the biosphere suffered a long-running series of environmental insults rather than a single, catastrophic strike.
...within the past few years scientists began sampling the mass extinction boundaries....data from the periods of mass extinction, other than the K/T event, suggested that the world's oceans have more than once reverted to the extremely low oxygen conditions, known as anoxia, that were common before plants and animals became abundant.
Among the biomarkers uncovered were the remains of large numbers of tiny photosynthetic green sulfur bacteria. Today these microbes are found, along with their cousins, photosynthetic purple sulfur bacteria, living in anoxic marine environments such as the depths of stagnant lakes and the Black Sea, and they are pretty noxious characters. For energy, they oxidize hydrogen sulfide (H2S) gas, a poison to most other forms of life, and convert it into sulfur. Thus, their abundance at the extinction boundaries opened the way for a new interpretation of the cause of mass extinctions.
Because these microbes can live only in an oxygen-free environment but need sunlight for their photosynthesis, their presence in strata representing shallow marine settings is itself a marker indicating that even the surface of the oceans at the end of the Permian was without oxygen but was enriched in H2S.
...if oxygen levels drop in the oceans, conditions begin to favor the deep-sea anaerobic bacteria, which proliferate and produce greater amounts of hydrogen sulfide....The horrific result would be great bubbles of toxic H2S gas erupting into the atmosphere....
Enough of the toxic gas would have permeated the atmosphere to have killed both plants and animals--particu-larly because the lethality of H2S increases with temperature. And several large and small mass extinctions seem to have occurred during short intervals of global warming. That is where the ancient volcanic activity may have come in.
Around the time of multiple mass extinctions, major volcanic events are known to have extruded thousands of square kilometers of lava onto the land or the seafloor. A by-product of this tremendous volcanic outpouring would have been enormous volumes of carbon dioxide and methane entering the atmosphere, which would have caused rapid global warming. During the latest Permian and Triassic as well as in the early Jurassic, middle Cretaceous and late Paleocene, among other periods, the carbon-isotope record confirms that CO2 concentrations skyrocketed immediately before the start of the extinctions and then stayed high for hundreds of thousands to a few million years.
But the most critical factor seems to have been the oceans. Heating makes it harder for water to absorb oxygen from the atmosphere; thus, if ancient volcanism raised CO2 and lowered the amount of oxygen in the atmosphere, and global warming made it more difficult for the remaining oxygen to penetrate the oceans, conditions would have become amenable for the deep-sea anaerobic bacteria to generate massive upwellings of H2S. Oxygen-breathing ocean life would have been hit first and hardest, whereas the photosynthetic green and purple H2S-consuming bacteria would have been able to thrive at the surface of the anoxic ocean.
The so-called thermal extinction at the end of the Paleocene began when atmospheric CO2 was just under 1,000 parts per million (ppm). At the end of the Triassic, CO2 was just above 1,000 ppm. Today with CO2 around 385 ppm, it seems we are still safe. But with atmospheric carbon climbing at an annual rate of 2 ppm and expected to accelerate to 3 ppm, levels could approach 900 ppm by the end of the next century, and conditions that bring about the beginnings of ocean anoxia may be in place.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment