Thursday, August 17, 2006

The Nature of Space (and Mathematics)

Clips from a New York Times article...

Grisha Perelman, where are you?

Three years ago, a Russian mathematician by the name of Grigory Perelman, a k a Grisha, in St. Petersburg, announced that he had solved a famous and intractable mathematical problem, known as the Poincaré conjecture, about the nature of space.

...After posting a few short papers on the Internet and making a whirlwind lecture tour of the United States, Dr. Perelman disappeared back into the Russian woods in the spring of 2003, leaving the world’s mathematicians to pick up the pieces and decide if he was right.

...Shing-Tung Yau of Harvard said the understanding of three-dimensional space brought about by Poincaré’s conjecture could be one of the major pillars of math in the 21st century.

Quoting Poincaré himself, Dr.Yau said, “Thought is only a flash in the middle of a long night, but the flash that means everything.”

...Mathematicians have been waiting for this result for more than 100 years, ever since the French polymath Henri Poincaré posed the problem in 1904. And they acknowledge that it may be another 100 years before its full implications for math and physics are understood. For now, they say, it is just beautiful, like art or a challenging new opera.

Dr. Morgan said the excitement came not from the final proof of the conjecture, which everybody felt was true, but the method, “finding deep connections between what were unrelated fields of mathematics.”

William Thurston of Cornell, the author of a deeper conjecture that includes Poincaré’s and that is now apparently proved, said, “Math is really about the human mind, about how people can think effectively, and why curiosity is quite a good guide,” explaining that curiosity is tied in some way with intuition.

“You don’t see what you’re seeing until you see it,” Dr. Thurston said, “but when you do see it, it lets you see many other things.”

...In effect, what Poincaré suggested was that anything without holes has to be a sphere. The one qualification was that this “anything” had to be what mathematicians call compact, or closed, meaning that it has a finite extent: no matter how far you strike out in one direction or another, you can get only so far away before you start coming back, the way you can never get more than 12,500 miles from home on the Earth.

...Dr. Perelman had already established himself as a master of differential geometry, the study of curves and surfaces, which is essential to, among other things, relativity and string theory.

...In a series of postdoctoral fellowships in the United States in the early 1990’s, Dr. Perelman impressed his colleagues as “a kind of unworldly person,” in the words of Dr. Greene of U.C.L.A. — friendly, but shy and not interested in material wealth.

...Asked about Dr. Perelman’s pleasures, Dr. Anderson said that he talked a lot about hiking in the woods near St. Petersburg looking for mushrooms.


See more at the Clay Mathematics Institute.


No comments: